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Abstract

A model of epidemic dispersal (based on the assumption that susceptible cattle were homo-

geneously mixed over space, or non-spatial model) was compared to a partially spatially explicit and

discrete model (the spatial model), which was composed of differential equations and used geo-coded

data (Euclidean distances between county centroids). While the spatial model accounted for intra-

and inter-county epidemic spread, the non-spatial model did not assess regional differences. A geo-

coded dataset that resembled conditions favouring homogeneous mixing assumptions (based on the

2001 Uruguayan foot-and-mouth disease epidemic), was used for testing.

Significant differences between models were observed in the average transmission rate between

farms, both before and after a control policy (animal movement ban) was imposed. They also differed

in terms of daily number of infected farms: the non-spatial model revealed a single epidemic peak (at,

approximately, 25 epidemic days); while the spatial model revealed two epidemic peaks (at,

approximately, 12 and 28 days, respectively). While the spatial model fitted well with the observed

cumulative number of infected farms, the non-spatial model did not (P< 0:01). In addition, the

spatial model: (a) indicated an early intra-county reproductive number R of � 87 (falling to < 1

within 25 days), and an inter-county R< 1; (b) predicted that, if animal movement restrictions had
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begun 3 days before/after the estimated initiation of such policy, cases would have decreased/

increased by 23 or 26%, respectively.

Spatial factors (such as inter-farm distance and coverage of vaccination campaigns, absent in non-

spatial models) may explain why partially explicit spatial models describe epidemic spread more

accurately than non-spatial models even at early epidemic phases. Integration of geo-coded data into

mathematical models is recommended.

# 2005 Elsevier B.V. All rights reserved.

Keywords: Foot-and-mouth disease; Spatial mathematical model; Reproductive number; Uruguay; Movement

restrictions

1. Introduction

Foot-and-mouth disease (FMD) is a highly infectious illness caused by an aphthovirus

that affects cloven-hoofed animals such as pigs, cattle, and sheep (Alexandersen et al.,

2003; Kitching et al., 2005). The likelihood that FMD will start an epidemic outbreak

depends on various factors that include the susceptibility of the livestock, the potential

mode(s) of transmission, and the effectiveness of intervention efforts. Control efforts have

been based, since 1911, on the concept of the basic reproductive number, introduced by Sir

Ronald Ross (1911) and Kermack andMcKendrick (1927). The basic reproductive number

(or R0) is defined as the number of secondary cases generated by a primary case when the

virus is introduced in a population of fully susceptible individuals at a demographic steady

state (Diekmann and Heesterbeek, 2000). That is, R0 measures the power of a disease to

invade a population under conditions that facilitate maximal growth. Once an outbreak

starts, the number of susceptible livestock decreases either through loss of susceptibles

(i.e., they get infected) or from the implementation of control measures such as slaughter or

vaccination. When R0 > 1, the epidemic progresses. When R0 < 1, the epidemic dies out.

The higher the R0, the faster the infecting agent runs out of susceptible individuals (i.e., the

faster it decreases).

However, the valid measurement of R0 is problematic. To do so, models should assess the

actual transmission mechanisms (causes that induce effects, that is, deterministic models),

which would require data that: (a) are likely to be unknown or biased (i.e., delayed case

reporting and under-reporting) and (b) are likely to vary over space and even time (i.e., roads,

farms, animal density, animal and human movement) (Rivas et al., 2004). Yet, simple

deterministic models have been regarded to yield useful insights, generate intriguing

hypotheses, and guide future research (Anderson and May, 1991). Elaborate deterministic

models have been used to guide epidemic control policy (Ferguson et al., 2001).

One major assumption of deterministic models is that, in the early phase of an epidemic

(especially when the disease is exotic and, therefore, all animals are susceptible; when the

replication cycle of the infecting agent is brief), the transmission is so rapid that, for practical

purposes, the scenariowhere the epidemic developsmay be regarded as ‘‘space-less’’: under

those conditions, susceptible individualsmay be regarded to be homogeneouslymixed and in

close contact (Keeling, 1999). The homogeneous mixing assumption characterizes non-

spatial models (Koopman, 2004). That assumption leads to consider all infected cases as

identical and, therefore, control policies based on the homogeneous mixing model tend to
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apply the same intervention in the same fashion (i.e., buffer zones of equal diameter, within

which the same policy is applied, such as ring vaccinations) (Müller et al., 2000).

To assess the validity of homogeneously mixing-based, non-spatial models, at least two

factors are needed: (a) a spatially explicit model to be compared to and (b) geo-coded and

temporal epidemic data. One approximation to provide a (partially) spatially explicit

alternative model is to investigate R0 while using spatial (local) data that consider the

centroid-to-centroid distances among all county pairs where an epidemic takes place

(Glavanakov et al., 2001). In addition, a geo-referenced and temporal dataset where an

exotic infecting agent characterized by a short replication cycle infects a population

lacking immunity (such as FMD affecting cattle) is needed. At its earliest epidemic phase,

that scenario would resemble a homogeneously mixed scenario (Rivas et al., 2003a).

Consequently, this study explored the validity of a non-spatial model in relation to a

spatial model that estimated the local and regional disease transmission. For that purpose, a

geo-referenced dataset based on the 2001 Uruguayan FMD epidemic was used.

2. Methods

2.1. Geo-referenced and temporal epidemic data

Data from the FMD epidemic that took place in Uruguay in 2001 were obtained from

public sources MGAP, 2001; PAHO, 2002; European Commission DG (SANCO) reports #

3342/2001 and 3456/2001. The index case of this epidemic was reported on 23 April 2001

(epidemic day 1). Over 79 consecutive days, 1763 cases (infected farms) were reported

(Fig. 1). Details on this epidemic have been reported elsewhere (Rivas et al., 2003a, b,

2004). A data-based simulation of the 2001 FMD epidemic in Uruguay is given in

Supplementary materials.

Inter-centroid county distances among all Region’s I county pairs (n ¼ 861) were

generated by Geographical Information Systems (GIS) software by retrieving first and

linking later the polygon’s centroid value of every county (n ¼ 42).

2.2. Spatial epidemic model

The number of secondary outbreaks generated by a primary outbreak during its entire

period of infectiousness was classified as internal (within counties) and external (across

counties). Parameter values were estimated from data using least-squares fitting

techniques. Parameter uncertainty was assessed using the stochastic temporal dependence

of the cumulative number of outbreaks. Standard deviations for the estimated parameters

were also calculated.

The epidemiological unit of analysis was the number of infected farms per county

(Table 1). Farms were classified as susceptible (S), latent (L), infectious and undetected (I),

and detected and isolated (J). A susceptible farm in county i(in contact with the virus) was

regarded to enter the latent (uninfectious and asymptomatic) class (L) at the ratePn
j¼1 bi jI j. In other words, the rate of infection was assumed to be proportional to the sum

of the weighted prevalences of infected farms from all counties j. Hence, the transmission
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parameters bi j measured the impact on county i from direct and indirect ‘‘contacts’’

between i-county and the j-county. These ‘‘contacts’’ may be the result of animal relocation

or movement, from the sharing of milk routes (drivers as ‘‘mechanical’’ vectors or carriers),

shared veterinarians or overlapping visitors (buyers, salesmen of farm products, etc. Sellers

et al., 1971). Far away farms were assumed to be less likely to share the same veterinarians,
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Fig. 1. (a) Daily and (b) cumulative number of farms reported as infected during the 2001 Foot and Mouth Disease

epidemic in Uruguay. The epidemic reached its maximum of 66 outbreaks on day 33 (25May 2001). By day 79 (10

July 2001), 1762 outbreaks had been reported. Datawere obtained from public records of the UruguayanMinistry of

Livestock, Agriculture, and Fisheries (MGAP), the Pan-American Health Organization, and theWorld Organization

forAnimalHealth (). The periodic dips in the data tended to coincidewithweekends. (c)Map ofUruguaywith county

divisions. (d)Distributionof inter-county (Euclidean) distanceswhichwereobtained using aGeographic Information

System (GIS) software. The centroid of each county was used to compute Euclidean distances.
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Table 1

Distribution of farm density and outbreaks of the 2001 foot-and-mouth disease epidemic in Uruguay over 79 epidemic days

Region I Region II Region III

State Counties Nj Inf. Tot. State Counties Nj Inf. Tot. State Counties Nj Inf. Tot.

Soriano 12 140 463 1682 Paysandu 13 121 64 1567 Artigas 12 118 34 1421

Colonia 18 151 362 2724 Salto 16 111 56 1783 Rivera 10 206 14 2064

Rio Negro 12 77 178 925 S. Jose 10 243 68 2430 C. Largo 16 196 26 2744

Flores 9 91 62 816 Lavalleja 14 235 15 3296

Florida 16 152 109 2436 Rocha 12 190 12 2284

Tacuarembo 16 152 111 2427 T. y Tres 11 163 59 1797

Durazno 15 136 92 2043 Maldonado 13 136 12 1773

Canelones 23 141 25 3800

Counties, number of counties per state; Nj, mean number of farms per county; Inf., number of outbreaks per state; Tot., total number of farms per state.



milk trucks or visitors. It was assumed that the rate of transmission bi j between farms in

counties i and j decayed exponentially fast with the Euclidean distance of their respective

county centroids. The elements of the ‘‘mixing’’ or ‘‘contact’’ matrix bi j (Anderson and

May, 1991) were therefore expressed as

bi j ¼ bðtÞ e�qdi; j (1)

where bðtÞ denotes the average transmission rate of infectious farms within each county at

time t, di j the distance between the centroids of counties i and j (Fig. 1 d), and the parameter

q(km�1) which quantifies the extent of average local spread (1=q can also be interpreted as
the FMD mean transmission range). Small values of q lead to widespread influence,

whereas large values of q support the hypothesis that local spread is the key. For simplicity,

uniform mixing within each county was assumed, that is, dii ¼ 0. It was also assumed that

latently infected farms ‘‘progressed’’ towards the infectious class after a mean time of 1=k
days and that infectious farms were detected and isolated from other farms at the per-capita

rate a. That is, a is the average time required to detect and isolate an infected farm.

The above definitions and assumptions led to the following FMD model:

Ṡi ¼ �Si
Xn
j¼1

bi jI j; L̇i ¼ Si
Xn
j¼1

bi jI j � kLi; İi ¼ kLi � aIi; J̇i ¼ aIi

(2)

The dot denotes time derivatives while Si; Li; Ii, and Ji denote the number of susceptible,

latent, infectious, and isolated farms in county i (i ¼ 1; 2; . . . ; n). The distribution of the

number of farms per county is given in Table 1. The above system falls within the class of

metapopulation models that have been used extensively to study ecological processes in

heterogeneous patchy environments. In fact, the spatially dependent transmission rates

fbi jgcorrespond to the metapopulation patch connectivity index (Hanski, 1998) once we

re-interpret di j as a measure of the influence of the landscape on migration (Moilane and

Hanski, 1998). The elements of fdi jghere were set as ‘‘indices’’ that captured the effects of
local transmission factors such as wind direction and animal heterogeneity within farms

(dairy, beef, etc.). Here, the county connectivity di j was approximated by the distance

between counties. The incorporation of a few time-dependent control/interventions

measures led to the following modified model (see compartment diagram in Fig. 2 a):

Ṡi ¼ �SiðtÞ
Xn
j¼1

bi jðtÞI jðtÞ � nðtÞSiðtÞ;

V̇i ¼ nðtÞSiðtÞ � ViðtÞ
Xn
j¼1

bi jðtÞI jðtÞ � mðtÞViðtÞ;

L̇i ¼ ðSiðtÞ þ ViðtÞÞ
Xn
j¼1

bi jðtÞI jðtÞ � kðtÞLiðtÞ; İi ¼ kðtÞLiðtÞ � aðtÞIiðtÞ;

J̇i ¼ aðtÞIiðtÞ; Ṗi ¼ mðtÞViðtÞ

(3)
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where the classes Si; Li; Ii and Ji were defined as before. Susceptible farms in county i (Si) are
vaccinated at rate n (Vi); vaccinated farms in Vi enter the protected class Pi at rate m;

vaccinated farms in county i that have not yet reached protective levels (class P) enter the

latent (uninfectious and asymptomatic) class (L) at the rate
Pn

j¼1 bi jI j. The total cumulative

number of reported infected farms as a function of time is given by CðtÞ ¼
Pn

i¼1 JiðtÞwhile
the daily number of new reported infected farms is given by ĊðtÞ, that is by aðtÞ

Pn
i¼1 IiðtÞ.

The dependence of parameters bðtÞ;aðtÞ; nðtÞ, and mðtÞ on time allow for the possibility

of implementing control measures at different times (Chowell et al., 2004). For simplicity,

these parameters were modelled as simple step functions:

bðtÞ ¼ b0 t< tm
b t� tm

�
(4)

aðtÞ ¼ a0 t< tv
a t� tv

�
(5)

nðtÞ ¼ 0 t< tv
n t� tv

�
(6)
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Fig. 2. (a) Schematic representation of the status progression for farms in a given county used to model the

epidemic, as explained in the text. (b) The initial intrinsic growth rate r for Regions I–III for the epidemic over 79

epidemic days. (c) Regions I–III comprise 3, 7 and 8 Uruguayan states, respectively (see Table 1). The circle

(Region I) denotes the site where the index case was reported.



mðtÞ ¼ 0 t< tv
m t� tv

�
(7)

where tm ¼ 5 is the epidemic day when movement restrictions were put in place and

tv ¼ 13 is the time when mass vaccination started.

2.3. The reproductive number

Because there was not sufficient data to estimate the basic reproductive number (R0), the

internal reproductive number of county i, Rint
i was defined as the number of secondary

outbreaks generated by an outbreak in county i within the same county after t> 4,

Rint
i ¼ bNi=a, where Ni denoted the number of farms in county i and 1=a was the average

time it took to identify infected farms. The external (across counties) reproductive number of

county i,Rext
i , was defined as the number of secondary outbreaks generated by an outbreak in

county i in other counties, where j ¼ 1; 2; . . . ; n; j 6¼ i. Rext
i ¼

Pn
j 6¼ i bNj e

�qdi j=a, that is, it
was given by the additive contributions of the number of secondary cases (after the first

intervention) in county i. Hence, the contributions were weighted by distance.

2.4. Spatially homogeneous model

In order to assess the role of spatial heterogeneity, a description of the corresponding

spatially homogeneous version (null-model) follows. We set the homogeneous mixing

assumption, bi j ¼ b̂ðtÞ, where

b̂ðtÞ ¼ b̂0 t< tm
b̂ t� tm

�
(8)

The corresponding system of nonlinear ordinary differential equations for the spatially

homogeneous model becomes

ṠðtÞ ¼ � b̂ðtÞSðtÞIðtÞ
N

� n̂S; V̇ðtÞ ¼ n̂S� b̂ðtÞVðtÞIðtÞ
N

� m̂V;

L̇ðtÞ ¼ b̂ðtÞ ðSðtÞ þ VðtÞÞIðtÞ
N

� k̂LðtÞ; İðtÞ ¼ k̂LðtÞ � âIðtÞ;

J̇ðtÞ ¼ âIðtÞ; ṖðtÞ ¼ m̂VðtÞ (9)

where S;V ; L; I; J, and P denote the total number of susceptible, vaccinated, latent,

infectious, isolated, and protected farms, respectively. The parameters âðtÞ, n̂ðtÞ, and
m̂ðtÞ depend on time in the same manner as in the spatially explicit model.

2.5. Parameter estimation

The intrinsic growth rate quantified epidemic growth between successive time periods.

The initial region-specific intrinsic growth rates ri (i ¼ 1; 2; 3) were estimated under the

assumption of exponential growth. That is, r (with units of 1 day�1) was estimated by

assuming that the cumulative number of reported farms was proportional to exp(rt), where t
is time (days). Solving for r, we obtained r ¼ ðln ðyðtÞÞ � ln ðy0ÞÞ=t, where ln denotes
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natural logarithm and y0 is the number of outbreaks reported the during the first reporting

day. The intrinsic growth rate in Region III was estimated using the cumulative number of

outbreaks from 2 to 7 May 2001. This window of time was chosen because of lack of cases

prior to 2 May (Fig. 2 b).

The model parameters Q ¼ ðbðtÞ; kðtÞ;aðtÞ; qðtÞ; nðtÞ;mðtÞÞ and the initial number of

exposed and infectious farms (Eð0Þ and Ið0Þ) were estimated from the cumulative number of

reported farms (ti; yi), where ti denotes the i th reporting time (79 reporting days) and yi is the
cumulative number of reported farms by least-squares fitting to Cðt;QÞ (the cumulative

number of reported farms for our ordinary differential equation (or ODE) model with

interventions (3) in Region I (where the epidemic started and the majority of outbreaks

occurred)). This gives a system of five equations per county (42 counties in Region I, or 210

differential equations). The farmdensity of each county is provided in Table 1. A language of

technical computing (MATLAB, The MathWorks, Inc.) was used to carry out the least-

squares fitting procedure. Initial conditions were chosen within the appropriate ranges

(0< b< 100; 1=5< k< 1=3; 1=12<a< 1=4; 0< q< 10; 0< n< 10; 0<m< 10). Para-

meter optimization was carried out using the Levenberg–Marquardt method with line-

search (More, 1977). This methodwas implemented inMATLABwith the built-in routine

lsqcurve fit:m. The cumulative number of reported farms JðtÞunder a spatially

homogeneous mixing ODE model (9) was fitted to data using also the same procedure

described above.

The asymptotic variance–covariance AVðQ̂Þ of the least-squares estimate for the

spatially explicit model (3) was computed using a Brownian bridge error structure to model

the stochastic temporal dependence of the cumulative number of outbreaks. The explicit

formula used is

AVðQ̂Þ ¼ s2BðQ0ÞrQCðQ0ÞTGrQCðQ0ÞBðQ0Þ (10)

where BðQ0Þ ¼ ½rQCðQ0ÞTrQCðQ0Þ��1
.

An estimate of AVðQ̂Þ is

ŝ2B̂ðQ̂ÞrQĈðQ̂ÞTGrQĈðQ̂ÞB̂ðQ̂Þ (11)

where B̂ðQ̂Þ ¼ ½rQĈðQ̂ÞTrQĈðQ̂Þ��1; ŝ2 ¼
P

ðyi � Cðti; Q̂ÞÞ2=ðI1�nGIn�1Þ and rQĈ

are numerical derivatives of CðQ̂Þ. The error structure (Davidian and Giltinan, 1995)

was also modelled by a Brownian bridge (G). Here G is an n� n matrix with entries

Gi; j ¼ ð1=nÞmin ði; jÞ � ði jÞ=n2, where n is the total number of observations. G captures

the higher variability in the cumulative number of outbreaks observed on the middle course

of the epidemic as well as the smaller variability observed at the beginning and the end of

the epidemic. Confidence intervals of 95% were computed using the asymptotic variance

of our parameter estimates (diagonal elements of AVðQ̂Þ). The asymptotic variance–

covariance AVðQ̂0Þ for the non-spatial (homogeneous mixing) model can be similarly

computed using JðtÞ in model (9) instead of CðtÞ.
The improvement in goodness of fit provided by the spatial model was compared to the

non-spatial model by the stepwise F test (Jacquez, 1996). In fact, if RSSspatial denotes the

residual sum of squares obtained from the spatial model, and RSSnon-spatial is the
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corresponding sum of squares from the non-spatial (homogeneous mixing) model,

then

RSSspatial ¼
Xn¼79

i¼1

ðyi � Cðti; Q̂ÞÞ2 (12)

RSSnon-spatial ¼
Xn¼79

i¼1

ðyi � Jðti; Q̂0ÞÞ2 (13)

The F test is the ratio of the decrease in the residual sum of squares, divided by the decrease

in degrees of freedom ( pspatial � pnon-spatial), all divided by the mean residual sum of

squares obtained from the spatial model (RSSspatial=ðn� pspatialÞ). That is,

ðRSSnon-spatial � RSSspatialÞ=ð pspatial � pnon-spatialÞ
ðRSSspatial=ðn� pspatialÞÞ

�Fð pspatial� pnon-spatialÞ;ðn� pspatialÞ

(14)

where pspatial � pnon-spatial ¼ 1 (the spatial model has only one additional parameter

(parameter q) than the non-spatial model). When the above ratio is greater than the

corresponding value of the F distribution for the significance level chosen then we would

conclude that the spatial model significantly decreases the residual variance (Jacquez,

1996). Epidemic regions were identified in terms of the proportion of cases by use of the

x2test, conducted with statistical software.

3. Results

3.1. Regional epidemic growth rates

Three epidemic regions could be differentiated based on the percentage of all cases

noticed in each region (Table 1 and Fig. 2 b and c). By epidemic day 79, Region I displayed

57% of all cases, while Regions II and III reported 32 and 11%, respectively

(P< 0:05;x2test). The initial intrinsic growth rates r shown in Regions I–III were 0.65,

0.35, and 0.19, respectively. After the 10th epidemic day, these growth rates decayed,

becoming similar in all three regions (Fig. 2 b). Because Region I reported most cases

throughout the epidemic and, consequently, it was the region most likely to display an

environment that would correspond to the homogeneous mixing model, it was chosen for

further analyses.

3.2. Model selection

When the non-spatial epidemic model was fitted to the cumulative number of Region I’s

infected farms, a systematic deviation was noticed during the first 20 epidemic days

between fitted and observed epidemic data (Fig. 3 a). In contrast, when the cumulative

number of Region I’s infected farms was fitted using the spatial model, a close agreement

was revealed (Fig. 3 b). The spatial model fit differed statistically significantly from that of
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G. Chowell et al. / Preventive Veterinary Medicine 73 (2006) 297–314 307

Fig. 3. The cumulative and daily number of farms reported as infected in Region I (Fig. 2 c), where the epidemic

started (23 April 2001) and most outbreaks occurred. Circles represent the observed data. The non-spatial model

(9) fit is shown in (a) cumulative and (c) daily number of farms reported as infected in Region I. The spatial model

(3) fit is shown in (b) cumulative and (d) daily number of reported outbreaks.



the non-spatial model (P< 0:01, F-test). Additional differences between models were

noticed when best-fit solutions were compared to the observed daily number of infected

farms. While the non-spatial model indicated a single epidemic peak (taking place at,

approximately, the 25th epidemic day), the spatial model showed two epidemic peaks,

occurring at epidemic days 10th and 28th, respectively (Fig. 3 c and d).

3.3. Comparison between models in terms of estimated parameters

The parameter estimates calculated by thesemodels indicated both significant differences

and similarities. The initial transmission rate was estimated by the non-spatial model to be

b̂0 ¼ 0:77 (S.D. 0.04) in the first 4 epidemic days, while the spatial model estimated it as

b0 ¼ 0:33 (S.D. 0.13). After the fifth epidemic day (start of movement restrictions), the

transmission ratewas estimated to be 0.49 (S.D. 0.08) and 0.10 (S.D. 0.03) by the non-spatial

and spatial models, respectively (Tables 2 and 3). Other parameters did not differ beween

models. Because the effects of control policy (vaccination) were regarded to occur at or after

the epidemic peak, vaccination-related parameters were not analysed.

3.4. Applications for evaluation of control policy

Both models were concordant in indicating a significant decrease in the average

transmission rate after a nation-wide animal movement ban was imposed on epidemic day

5. However, they differed markedly in the magnitude of that reduction. The non-spatial

model indicated a reduction of 36%, whereas the spatial model estimated a reduction of

70% (Tables 2 and 3).

The spatial model also predicted that, if animal movement restrictions had been

imposed 3 days before (or after) the estimated date of initiation of such policy (epidemic

day 5), the total number of infected farms would have been reduced (or increased) by 23 or

26%, respectively (Fig. 4). The spatial model also allowed us to estimate the intra- and

inter-county reproductive numbers, although it only included data reported since epidemic

day 5 (after animal movement restrictions had been imposed). The average internal

reproductive number for Region I’s individual counties was � 87, while the external

(regional average) was � 0:82. We estimated that Region I’s internal reproductive number

decreased to less than 1 by epidemic day 25th.

4. Discussion

Because observational epidemiology is a discipline that does not facilitate the

implementation of controlled experimental designs, model evaluation is constrained to use

simulated scenarios. Data obtained from the 2001 Uruguayan FMD epidemic were

retrospectively used to assess and compare the models here described. However, case

reporting of actual epidemics is likely to include errors not limited to delayed reporting and

under-reporting. Therefore, this study should not be construed as an assessment of the

epidemic that took place in Uruguay in 2001, but as a model evaluation that used
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hypothetical (although realistic) geo-referenced and temporal epidemic data. That is, this

study should be considered within the frame of the data here reported.

A contrast was noticed between early estimates of intra- and inter-county R (87.20 and

0.82, respectively). At least the intra-county’s R estimate was likely to reflect the influence

of an assumption of the model, which was that all secondary (and later) cases derived

only from those reported in the first replication cycle (primary cases), which is equal to

say that no indirect transmission (i.e., through human movements or delivery routes,
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Table 2

Parameter definitions and estimates obtained from least-squares fitting of non-spatial epidemic model (9) to the

cumulative number of infected farms over time (days) in Region I (Fig. 3 a)

Parameters Definition Estimates S.D.

b̂0 Average transmission rate between farms

before movement restrictions

0:77 0:04

b̂ Average transmission rate between farms

after movement restrictions

0:49 0:08

â0 Rate of detection of infected farms before

movement restrictions

0:16 0:07

â Rate of detection of infected farms after

movement restrictions

0:14 0:02

k̂ Rate of progression from latent to infectious state 0:26 0:07

n̂ Vaccination rate of susceptible farms 0:16 0:04

m̂ Rate at which vaccinated farms achieve

protective levels

0:31 0:05

All the parameters have units (day�1).

Table 3

Parameter definitions and estimates obtained from least-squares fitting of spatial epidemic model (3) to the

cumulative number of infected farms (Fig. 3 b) in Region I

Parameters Definition Estimates S.D.

b0 Average transmission rate within counties

before movement restrictions

0:33 0:13

b Average transmission rate within counties

after movement restrictions

0.10 0.03

a0 Rate of detection of infected farms

before movement restrictions

0.14 0.02

a Rate of detection of infected farms

after movement restrictions

0.14 0.02

k Rate of progression from latent to

infectious state

0.28 0.05

qa Positive constant quantifying the

extent of local spread

1.03 0.10

n Vaccination rate of susceptible farms 0.25 0.09

m Rate at which vaccinated farms achieve

protective levels

0.14 0.03

All the parameters have units (day�1) except for q whose units are km�1.
a Small values of q lead to widespread influence, while large values support local spread. Great mobility and

frequent interactions among farms would lead to small values of q.



such as those of milk trucks) could coexist, when in fact such transmission mode was not

prevented. Therefore, the early estimates for intra-county transmission were probably

over-estimated. However, within 25 epidemic days, the spatial model indicated a

decrease of the intra-county R to < 1. It is suggested that the use of two R’s may improve

the analysis of epidemic dispersal by assessing simultaneously two scales: (a) the micro-

or local scale (the intra-county R), and (b) the regional scale (the inter-county R). If used

together, these two scales might describe epidemic processes into four major types: (a) a

high Rint and low Rext, (b) a low Rint and high Rext, (c) a low Rint and low Rext, and (d) a

high Rint and high Rext types. A high Rint and low Rext, type, as seen here, indicates that

the force of infection fades with distance, which ultimately suggests that epidemic

spread can only be sustained if the chances provided by long-distance connections

coexist with favourable local conditions. Under such scenario, Rint must be very high for

epidemics to progress (Holmes, 1997). Because the simultaneous use of two R estimates

such as these has not been explored before, it was not possible to make comparisons to

previously reported R values.

While the history of this scenario included the implementation of a national vaccination

campaign (initiated on epidemic day 17th), which was assumed to take place over two

weeks and require, at least, an additional week before antibody titers reached protective

G. Chowell et al. / Preventive Veterinary Medicine 73 (2006) 297–314310

Fig. 4. (a) The daily and (b) cumulative number of farms reported as infected in Region I (Fig. 2 c), where the

outbreak started (23 April 2001) and most outbreaks occurred. Circles are the data, and the solid line is the best-fit

solution of the spatial model equations (3) to the data by least-squares fitting (parameter estimates are given in

Table 3). Two scenarios are shown: (dash–dash) movement restrictions with a 3-day delay and (dash–dot) 3 days

before the actual date on which movement restrictions started.



immunity European Commission DG (SANCO) report # 3342/2001; Doel, 2003, that

intervention was not a factor in the period prior to the epidemic peak (achieved before

epidemic day 28, Fig. 3 c and d). Consequently, vaccination did not influence the only time

frame within which conditions could resemble homogeneous mixing (when R> 1,

Anderson and May, 1991; Brauer and Castillo-Chavez, 2000). Further potential sources of

bias included the scale of the variables (infected farms aggregated at county level). More

precise estimates could have been obtained if geo-referenced data on all individual farms

had been available (Rivas et al., 2004).

The parameter estimates generated by these models showed a good fit with previously

reported data. For example, Hugh-Jones and Wright (1970) reported a latent period of 3–6

days, while 95% CI: 2.6–5.6 days was estimated here (Table 3). Keeling et al. (2001);

Ferguson et al. (2001) estimated the infectious period at 8 days, in agreement with our

(95% CI) 6.3–8.3 days estimate (Table 3).

In the scenario under analysis the spatial model revealed a better fit than the non-spatial

model. For example, a statistically significant difference was found between models in

relation to their fit with observed (cumulative) number of infected farms (Fig. 3 a and b). In

addition, while the non-spatial model only revealed a single epidemic peak, a double

epidemic peak was indicated by the spatial model.

While the double peak indicated by the spatial model seemed to contradict the

expectation for epidemic decline after epidemic day 10th (shown in Fig. 2 b) further

supported by the rapid decrease of Rint, that finding could probably be explained by the

vaccination implemented in Region I since or after epidemic day 17th and/or human

movement European Commission DG (SANCO) report # 3342/2001. The movement of

vaccinators and vehicles across farms could have passively spread the virus among infected

(but not clinical) cases and susceptible animals, resulting in a second, although brief,

epidemic peak.

Because of the better fit displayed by the spatial model than the non-spatial model in

relation to observed data, it is concluded that in the scenario under analysis (where

conditions very closely resembled those based on homogeneous mixing), non-spatial

models seem, nevertheless, inappropriate to accurately describe epidemic dispersal.

Mathematically, this can be expressed as differences due to non-random/non-uniform data

distributions, which is equal to say that spatial autocorrelation (although not investigated in

this study) most likely occurred in this dataset (Moran, 1950).

Likely reasons that may explain why non-spatial models are inappropriate to plan or

monitor interventions (i.e., vaccinations) relate to factors such as the farm spatial network,

intervention spatial coverage, and the percentage of animals and time required to

synthesize specific antibody titers with protective levels (Fig. 5). Two opposing forces

determine the result of post-intervention outcomes. The outbreak is composed of factors

related to the virus (including the virus incubation period and the virus infectivity period)

and factors related to the spatial farm contact network. These factors can promote or

prevent epidemic dispersal. The intervention can be viewed as a spectrum that ranges

between two poles: (a) vaccine efficacy, and (b) vaccination impact. Vaccine efficacy is

composed of vaccine homology, vaccine production safety and vaccine potency testing. In

addition, the intervention may be influenced by: (a) the spatial coverage (including the

proportion of vaccinated farms or vaccination inter-herd coverage, and the proportion of

G. Chowell et al. / Preventive Veterinary Medicine 73 (2006) 297–314 311



vaccinated animals or intra-herd coverage), (b) the proportion of animals exposed to

susceptible (non-vaccinated) animals, (c) the initial immune response (proportion of

vaccinated animals that develop antibodies), (d) animals age, and (e) antibody titer decay.

All these factors possess spatial expressions, which need to be accounted. The net efficacy

of a vaccination campaign (vaccination impact) is a fraction of the original vaccine

efficacy. Vaccination programs require not only to achieve certain global percentage of

vaccinated animals (coverage) but also ensure that such level is evenly achieved, since

pockets of unvaccinated animals within vaccinated farms may allow the virus to re-invade

(Keeling, 1999). Yet, we have failed to find literature reporting data on the spatial

distribution of vaccination coverage. Similarly, spatial and temporal data on the percentage

of animals reaching protective immunity is not available in the FMD-related literature.

Antibody titers may decrease 7% or more after 4–6 weeks post-vaccination (Armstrong

and Mathew, 2001; Woolhouse et al., 1996). Antibody titer decay is also influenced by the

age of the host (Woolhouse et al., 1997). Therefore, both epidemic dispersal and

intervention outcomesmay be influenced by factors that are distributed over space in a non-

random/non-uniform fashion. Absence of such data might explain the poor fit shown by the

non-spatial model.

G. Chowell et al. / Preventive Veterinary Medicine 73 (2006) 297–314312

Fig. 5. Concepts influencing outbreak–intervention (vaccination) interactions.



5. Conclusions

These analyses suggest that spatially explicit models are more likely to reflect local

epidemic processes than non-spatial ones, even at early phases of epidemic dispersal. The

integration of geo-referenced data at the lowest possible scale (i.e., farm-level data, as

opposed to county-aggregated data) and mathematical models is recommended.
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